PROOF THAT g(ln T) FOR SINGLE RELAXATION TIME EXPRESSIONS FOR
Q*=Q'-Q" ARE DIRAC DELTA FUNCTIONS (8/24/24)

It needs to be shown that the integral of g (In r) is unity. All integrals are taken from

https://www.wolframalpha.com/calculators/integral-calculator/

Q) From Q":a)r/(1+a)2r2) and g(|n7.')=Re{Q"<T/TO)EXp(ii7Z/2)}, let 6=7/7, and

exp(iz/2)— LILT(](I +¢), so that
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The two indefinite integrals are
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Both these integrals must be evaluated through the singularity at =1 as the Cauchy principal
values. The first integral is
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https://www.wolframalpha.com/calculators/integral-calculator/

The first part of the second integral is the same as the first integral and the second part is
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Only if & = ¢ is the area unity. This constraint is physically necessary and might be
mathematically rigorous (still being researched).

=¢lIn(-1) = ¢ir's .The two integrals therefore add up to ‘{Li”g (% + |7rﬂ , SO that



