
PROOF THAT ( )lng   FOR SINGLE RELAXATION TIME EXPRESSIONS FOR 

* ' "Q Q Q= −  ARE DIRAC DELTA FUNCTIONS (8/24/24) 

It needs to be shown that the integral of ( )lng   is unity. All integrals are taken from 

https://www.wolframalpha.com/calculators/integral-calculator/ 
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The two indefinite integrals are 
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Both these integrals must be evaluated through the singularity at 1 =  as the Cauchy principal  

values. The first integral is 
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The first part of the second integral is the same as the first integral and the second part is 
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Only if  =  is the area unity. This constraint is physically necessary and might be 

mathematically rigorous (still being researched). 


